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ON THE OPTIMAL CONTROL OF VISCOUS INCOI'APRESSIBLE FLUID FLOW* 

M.A. 8RUTyAN and P.L. KRAPIVSKII 

The framework of the Navier-Stokes (N-S) equations is used to study flow 
past an arbitrary body on whose surface the tangential or normal velocity 
is under control. The necessary conditions are obtained for the minimum 
rate of energy dissipation. Exact analytical solutions of the corresponding 
problems are found for the case of flow past an ellipsoid in the Stokes 
approximation. 

1, Let a body S by streamlined by a stationary flow of a viscous incompressible fluid, 
We shall consider the following variational problem: to find a suction (injection) velocity 
distribution over the body surface, for which the rate of energy dissipation D is minimal. 
We shall assume here that the total flow of fluid across the surface of S is zero, 

Using dimensionless variables we writetheequations of motion for the fluid, the 
boundary ccnditions and the minimizing functional in the form 

AV-Vp--R(V.V)V=O, V-V=O, Vjs=Ws, Vlm=U (1.1) 

(W 

where Q is the outside of the body S,n = (%,?$,n,) is the unit vector of the external normal, 
U is the stream velocity at infinity and R is the Reynolds number. The N-S equations are 
made dimensionless so as to ensure their simplest form in the limiting case of the Stokes 
flow as R-0. 

2. To obtain the necessary condition for the minimum of the functional (1.21, we shall 
write the rate of suction (injection) W, the rate of flow V and the pressure p in the form 

W = W, f SW,, v = v, + EYr + a (e") (2.1) 

P-=Po+ep,+O(e*),O<rs~~ 

The functions W#, V, and p. satisfy the boundary condition (l.lt, while W,, V, and 

Pl satisfy the boundary value problem 

AV1-Vpr- R[(V,.V)V1+(V~.V)V~~=0, v.v1=0 (2.2) 

v, 1s = win, v, I- = 8 

Varying f1.2) and using the boundary conditions and Gauss's theorem, we obtain 

6n=-2sSVI-AVo2R--4eS~W,dS 
P s 

(2.3) 
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Let us scalar multiply the first equation of (2.2) by the function V*, so far arbitrary, 
and the second equation by the function p*. Combining these expressions and integrating, we 
obtain the following relation: 

s {I’*. (AV, - Vp, - ~[(v~.V)v~+{v~~v)v~l)+~*v.v~}a~=o (2.4) 
Q 

Let us now impose on V* the homogeneous boundary conditions V* fm = V*l.. = 0. 
Integrating (2.4) by parts we obtain 

s 
* {V,. (AV* - VP* + R [(I’, ‘0) V* -(vv,).v*])+p~v.v*)d61+ s (F-p*) WlriSe=O (2.5) 
Q ti 

where v** is the component of the function V* in the n direction. Let us obtain the 
functions V* and p* as a solution of the following boundary value problem: 

AV*-Vp*+R[(V,,.V)V*-(VV&V*]z2AVo, V.V*=O 12.6) 
V*+V*ICQrZO 

The system of equations (2.6) is usually encountered when solving problems of optimiza- 
tion in a viscous incompressible fluid. In particular, the system was obtained in /l/. A 
detailed description of methods of solving optimal problems occurring in various branches of 
mechanics is given in f2f. From (2.5),(2.6) we find that 

2@.AVodQ=- 
awn* 

-a7;--p* WldS 
$1 

) 

As a result, relation (2.3) takes the final form 

6D=e 5 (q-p*-4%) Wld$ 
S 

(2.7) 

Since the minimum dissipation rate is sought under the condition that the total flux of 
fluid across the surface of S is zero, the function W, satisfies the condition 

s W1dS=O (2.8) 
s 

From (2.7),(2.8) we obtain the necessary condition for the functional D(W) to be 
extremal 

c 

ar',* 
7--p*-- SV,O 

an )I S 
=conSt (2.9) 

3. Let us now consider the Stokes approximation (R -0). In this case, as was shown 
in /3/, the boundary value problem (2.6) has a trivial solution v* = 0, p* = -2p, + oonst 
only. Therefore, the necessary condition for the dissipation rate to be a minimum takes the 
relatively simple form 

( 
avTl, 

PO-27 11 
=censt 

S (3.1) 

As an example, we shall find the optimal distribution of the rate of suction (injection) 
over the surface of a sphere of unit radius, whose centre lies at the origin of a spherical 
system of coordinates (r,@,cp). From considerations of symmetry and the linear nature of 
the problem, we seek the solution in the form 

v = u + rot rot VU), f = f (r) (3.2) 
A more detailed explanation justifying the representation of the solution in the form 

(3.2) was given in /4/, using the Stokes problem of the flow past a sphere (without suction). 
The solution f = Ar + B/r was obtained in /4/ where the constants A and B were found from 
the boundary conditions. Thus the velocity and pressure are given by the formulas 

V=U__A "+;(".a) +J.+("*;)-" , p-p_ tr 2A(U.n) 
(3.3) 

The boundary condition at the sphere surface has, in the present case, the form 

U-A[U+n(U.n)1+~~3n(U-~)-U]=Wn 
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rate 

x of 

This is possible only when the following conditions hold: 

1 -A --B=O, (3B -A)(U.n)=W (3.4) 

From (3.1),(3.3) and (3.4) we obtainthefinal expression for the optimal suction (injection) 
at the sphere surface 

W=-&(U.n)=$Ucose (3.5) 

Restoring the original dimensions, we find that the rate of 
the sphere in this case are 

where a is the radius of the sphere and q is the coefficient of viscosity. 
Comparing this with the flow past an impermeable sphere we 

dissipation D and the drag 

(3.6) 

find, that the dissipation and drag were both reduced by about 11%. 
We note that the optimal solution obtained yields the absolute 
minimum for the dissipation rate for all viscous flows past a sphere 
with suction (injection). This follows from the Helmholtz var- 
iational principle /5/ according to which the rate of dissipation 
in a flow described by the N-S equations cannot be less that the 
rate of dissipation in a Stokes flow with the same boundary conditions. 

Figure 1 shows the streamline pattern in a flow past a sphere 

Fig. 1 
when the suction (injection) rate is optimal. We note that when the 
flux rate is given Q#O, all the results of Sect.2 still hold, 

In the special case of Stokes flow past a sphere, the solution sought will be the sum of the 
solution with zero flux, and the source situated at the centre of the sphere, with flow rate 

0. 
To realize optimal suction (injection), we must shed some power 

IV=SWVS 
S 

(3.7) 

All the results obtained in Sect.2 can be generalized tothe case when the constraint 
(3.7) is present. The necessary condition of optimality (2.9) will now take the form 

t 
av,* avno 
F-P*---4 - 2vw 

11 
= COIla 

S 

where v is the Lagrange.multiplier corresponding to the power constraint imposed on the 
control, In the Stokes approximation, condition (3.8) takes the form 

( Po- 2 
avno dn =vW+conat 

)I a 

We will seek the solution of the optimal problem again in the form (3.2),(3.3) The 

conditions of optimality (3.9) and the boundary conditions 

~(38-A)+2A+-2(2A -6B) 

The constraint imposed on the power N yields the last 

+- (3B - A)2 = $- 

From (3.4), (3.10) and (3.11) we obtain 

together yield 

zz 0 (3.10) 

relation for determining A,B and v 

(3.11) 

Thus the optimal solution in this case has the form 

W=Ij~cosO 

N x=hcqau(l--I/%); N,=- 

(3.12) 

4. We shall consider an ellipsoid with semiaxesa, b and c, as the example illustrating 

the exact solution of the optimizing problem for a non-axially symmetric body. In solving 

the problem we shall follow the solution of the Stokes flow past an ellipsoid without suction 

(injection) given in /6/. We will seek the solution V = (u,o,u‘) in the form 



lL=A -g+ B(x s--,)+u 

v=Ag+Bx+, w=A-$+Bxg 

a)=na&&+&+& -i).-$ 

I 

X=abc OD dp 
s T’ F = [(aa + P) (fl + P) (c* + r)P 
L 
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(4.1) 

Here h is the positive root of the equation 

and A and B are constants, so far unknown. The pressure is given by the formula p= 28*x/8x + 

P-. 
Taking into account equations (4.1) and the identity 

OD 

a@ 
z=2nax, a=a(h)=abc 

we write the boundary conditions u=Wnl,v=W~,w=Wn, at the surface of the ellipsoid 

in the form 

Here 

ao=a(O), x0= x(O), E=($+g+$)lb 

(4.2) 

14.3) 

(4.4) 

Taking into account the fact that at the ellipsoid surface 

as 2% al 2# al 
x=y&rt qy==wr x=2& 

we obtain, from the conditions (4.3) and (4.4). 

W=-2(++B)+ (4.5) 

Substituting (4.5) into (4.2) we obtain 2na& + U = Bx,,. The final formula for the 
optimal suction (injection) law is obtained after deriving the second equation connecting A 

and B from the optimality condition (3.1), and has the forIn 

The drag is given by the formula 

.(4.6) 

(4.7) 

When a = b = c, which corresponds to flow past a sphere, expressions (4.6) and (4.7) 
become (3.5) and (3.6). We note that by virtue of the linearity of the Stokes equations we 
can obtain from (4.6) an explicit form of the solution of the optimal problem for the case of 
flow past an ellipsoid, when the direction of the flow velocity at infinity is arbitrary. 

5. Let us consider the problem of minimum rate of dissipation of energy when the tangen- 
tial velocity q at the boundary of the body S is controlled, Certain theoretical and 
experimental investigations of the viscous incompressible fluid flows with a moving boundary 
are described in /7/. Following exactly the caee of control‘ling the normal velocity, we 
obtain the condition of optimality 

I(%_2 $$)xn]la=O 
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Here V* satisfies the boundary value problem (2.6), and V, is the velocity in the 
optimal solution, the latter representing the solution of the boundary value problem (1.1) 
with another boundary condition at the surface Vls=q* In the Stokes approximation the 
condition of optimality (5.1) becomes 

The condition obtained means that, in fact, in the optimal solution the viscous tangen- 
tial stresses at the body surface are zero, 

Let us consider flow past a sphere with a moving boundary. We will again seek the 
solution of the problem in the form (3.3). From symmetry considerations in the spherical 
coordinate system we have q = (O,q, O), and from the boundary conditions we have 

A- B=-$-, q=(l -A--B)UsinEl (_.3) 

The optimality condition (5.2) yields A + 3B = 0, and from (5.3) we obtain the final 
expression for the optimal solution (in dimensional coordinates) 

q=-+n8, If=+ziJ~, X=3nrjaU (5.4) 

Comparison with the flow past a sphere with a fixed boundary shows that the rate of 
dissipation is reduced by 75%, and the drag by 50%. From the HeL;lholtz variational principle 
it follows that D >3f8nqaUa for any viscous flow past a sphere with a moving boundary. 

Figure 2 shows the pattern of the streamlines around the sphere 
when the movinq boundary is optimally controlled. When the power is 
under constraint 

N+dS 
S 

we obtain the following optimal solution: 

Fig. 2 

Following the method given in Sect.4, we can generalize the optimal solution (5.4) to 
the case of flow past a triaxial ellipsoid. 

We note that when problems are solved without a constraint on N, in which the drag is 
minimized instead of the rate of dissipation, we find that an absolute minimum is attained 
by the solution with infinite thrust. In the case of flow past a sphere this result is 

reached at once from the formula X = 8nrjaUA, so that when A -+ --x), the drag X - -30. 

When a constraint is imposed on N, the solution of the problem of the minimum has the same 
accuracy as the corresponding solutions (3.12) and (5.5) of the problemsof minimum rate of 
dissioation. 
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